# **CMOS ANALOG IC DESIGN**

# **QUESTION BANK**

# M.TECH (I YEAR – I SEM) (2023-24)

# **Department of Electronics and Communication Engineering**



# MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY (Autonomous Institution - UGC, Govt. of India)

Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – 'A' Grade - ISO 9001:2015 Certified) Maisammaguda, Dhulapally (Post Via. Kompally), Secunderabad – 500100, Telangana State, India



Code No: **R22D6803** 

# MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

#### (Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, August 2023

CMOS Analog IC Design

| (VLSI&ES) |  |  |  |  |  |  |  |  |  |  |
|-----------|--|--|--|--|--|--|--|--|--|--|
| Roll No   |  |  |  |  |  |  |  |  |  |  |

#### Time: 3 hours

Note: This question paper contains two parts A and B Part A is compulsory which carries 10 marks and Answer all questions. Part B Consists of 5 SECTIONS (One SECTION for each UNIT). Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 10 marks. \*\*\*\*

#### PART-A (10 MARKS)

#### (Write all answers of this PART at one place)

|          |   | (write an answers of this PART at one place)                                                                            |                          |
|----------|---|-------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1        | А | Define threshold voltage? Give the expression for it?                                                                   | [1M]                     |
|          | В | Draw the small signal model for NMOS MOSFET with all considerations                                                     | [1M]                     |
|          | С | Draw the circuit diagram for Wilson current mirror?                                                                     | [1M]                     |
|          | D | What is the value of output resistance when MOSFET is in degeneration?                                                  | [1M]                     |
|          | E | What is Current amplifier?                                                                                              | [1M]                     |
|          | F | Draw the single ended differential amplifier circuit diagram?                                                           | [1M]                     |
|          | G | List out the op-amp operation parameters.                                                                               | [1M]                     |
|          | Н | Explain about OTA?                                                                                                      | [1M]                     |
|          | Ι | Sketch the transfer characteristic and model for comparator with finite gain?                                           | [1M]                     |
|          | J | Differentiate the Two-stage comparator and Discrete time Comparator                                                     | [1M]                     |
|          |   | <u>PART-B( 50 MARKS)</u>                                                                                                |                          |
|          |   | SECTION-I                                                                                                               |                          |
| 2        | A | Derive the I-V relationship of the MOSFET in all the possible regions.                                                  | [6M]                     |
|          | B | Suggest a region of operation for the same if one wants to design a switch                                              | [4M]                     |
|          |   | OR                                                                                                                      |                          |
| 3        | А | Explain about subthreshold conduction?                                                                                  | [5M]                     |
|          | В | Discuss the various short channel effects in MOS devices                                                                | [5M]                     |
|          |   | SECTION-II                                                                                                              |                          |
| 4        | А | Draw and explain about simple current mirror with beat helper.                                                          | [5M]                     |
|          | В | Explain about cascode current mirrors.                                                                                  | [5M]                     |
|          |   | OR                                                                                                                      |                          |
| 5        | А | Discuss about the charge injection errors in MOS switch.                                                                | [5M]                     |
|          | В | Draw the circuit diagram of High swing cascode current mirror circuit?                                                  | [5M]                     |
| <i>(</i> |   | SECTION-III                                                                                                             | [ <b>~</b> ] <b>(</b> ]  |
| 6        | A | Derive the voltage gain for telescopic op amp?                                                                          | [5M]                     |
|          | В | Discuss the principle of current feedback op amp                                                                        | [5M]                     |
| -        | ٨ | OR<br>Discuss the disc descent of a second | [ <i>E</i> ]\ <i>[</i> ] |
| 7        | А | Discuss the disadvantages of cascode amplifier under low voltage condition                                              | [5M]                     |

# **R22**

Max. Marks: 60

|   | and hence discuss the folded cascode structure to address the same            |                                                                                                       |
|---|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| В | Explain the various architectures of high gain amplifiers.                    | [5M]                                                                                                  |
|   | SECTION-IV                                                                    |                                                                                                       |
| А | Explain about PSRS of two stage op amp                                        | [5M]                                                                                                  |
| В | Explain what is meant by dominant pole compensation in operational amplifiers | [5M]                                                                                                  |
|   | 1                                                                             |                                                                                                       |
|   | Explain about single and two stage op amp with neat circuit diagrams          | [10M]                                                                                                 |
|   | SECTION-V                                                                     |                                                                                                       |
| А | Explain the auto zeroing concept of improving the performance of a comparator | [5M]                                                                                                  |
| B | 1                                                                             | [5M]                                                                                                  |
| D |                                                                               |                                                                                                       |
| А |                                                                               | [5M]                                                                                                  |
| B | Explain about Switched capacitor comparators?                                 | [5M]                                                                                                  |
|   | A<br>B<br>A<br>B<br>A                                                         | <ul> <li>B Explain the various architectures of high gain amplifiers.<br/><u>SECTION-IV</u></li></ul> |

Code No: **R20D6803** 

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, August 2023

# **CMOS Analog IC Design**

# (VLSI&ES) Roll No Image: Colspan="2">Image: Colspan="2" Roll No Image: Colspan="2">Image: Colspan="2"

#### Time: 3 hours

А

В

70

1

**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

\*\*\*

**SECTION-I** 

#### Design the Physical structure of an n-channel and a p-channel transistor in a p-well technology. Define the threshold voltages in MOS transistor and derive the threshold voltage equation.

OR

|    |   | OK                                                                         |               |
|----|---|----------------------------------------------------------------------------|---------------|
| 2  | А | Define latch up and explaintwo prevention methods. What are the            | [7M]          |
|    |   | advantages of latch up?                                                    |               |
|    | В | Design the small-signal model for the MOS transistor.                      | [ <b>7</b> M] |
|    |   | SECTION-II                                                                 |               |
| 3  | А | Illustrate the hierarchy of analog circuits for the operational amplifier. | [7M]          |
|    | В | Derive the active resistor equation $r_{ds}$ for the MOS diode resistor.   | [7M]          |
|    |   | OR                                                                         |               |
| 4  | А | Design current sinks and source characteristics.                           | [7M]          |
|    | В | Draw the I-V characteristics of ideal current and voltage references.      | [7M]          |
|    |   | SECTION-III                                                                |               |
| 5  | А | Compare Active PMOS load inverter and Current source load                  | [7M]          |
|    |   | inverter.                                                                  |               |
|    | В | Design the noise calculations in a current-source load inverter.           | [7M]          |
|    |   | OR                                                                         |               |
| 6  | А | Design the CMOS differential amplifier using a current-mirror load.        | [ <b>7</b> M] |
|    | В | Calculate the minimum output voltage for the simple Cascode                | [7M]          |
|    |   | Amplifier.                                                                 |               |
|    |   | SECTION-IV                                                                 |               |
| 7  | А | Design of CMOS Op-Amps and simplified inverting voltage amplifier          | [7M]          |
|    |   | using an op-amp.                                                           | []            |
|    | В | Give the design procedure for the Two-stage CMOS op-amp.                   | [ <b>7</b> M] |
|    |   | OR                                                                         |               |
| 8  |   | Design the power-supply rejection ratio of two-stage op amps.              | [14M]         |
|    |   | SECTION-V                                                                  |               |
| 9  | А | Design the two-stage, open-loop comparators and its performances.          | [7M]          |
|    | В | Design the clamped push-pull output comparators.                           | [7M]          |
|    |   | OR                                                                         | r             |
| 10 |   | Calculate the Propagation delay time of a two-stage open-loop              | [14M]         |
| 10 |   | comparator.                                                                |               |
|    |   | comparator.                                                                |               |

**R20** 

Max. Marks:

[7M]

[7M]

Code No: **R18D6808** 

#### MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

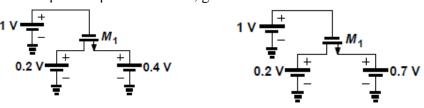
#### (Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, August 2023

CMOS Analog Integrated Circuit Design

#### (VLSI&ES)

| Roll No |  |
|---------|--|
|---------|--|


#### Time: 3 hours

Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer FIVE Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

### **SECTION-I**

- 1 A Explain the operation of a MOS transistor and derive the mathematical [7M] model (drain current equation) in all operating regions
  - B Determine the operating region and  $I_D$  of each of the following MOSFETs. [7M] Assume  $V_{THn} = 0.4$ ,  $V_{THp} = -0.4$ ,  $\mu_n C_{0x} = 200\mu A/V^2$ ,  $\mu_p C_{0x} = 100\mu A/V^2$ W/L=10 $\mu$ m/0.5  $\mu$ m. lambda=0, gamma=0



#### OR

|   |   | UR UR                                                                                                                                                                                          |                          |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 2 | A | What are the different capacitor components compatible with fabrication steps used to build MOS device. Mention the range of values and matching accuracy.                                     | [7M]                     |
|   | В | Draw the small signal model of a MOSFET and derive the small signal parameters                                                                                                                 | [7M]                     |
|   |   | SECTION-II                                                                                                                                                                                     |                          |
| 3 | А | Derive (using small signal analysis) the on-channel resistance of a<br>(i) Diode connected MOSFET in saturation region                                                                         | [7M]                     |
|   | - | (ii) MOSFET in linear region                                                                                                                                                                   |                          |
|   | В | With neat sketches, compare basic current sink and cascode current sink in terms of voltage overhead and output resistance.                                                                    | [7M]                     |
|   |   | OR                                                                                                                                                                                             |                          |
| 4 | А | Design a basic NMOS current mirror for a output current of 0.75mA from a reference current of 0.5mA and a voltage overhead of 0.3V.<br>Assume $V_{THn} = 0.4$ , $\mu_n C_{0x} = 200 \mu A/V^2$ | [7M]                     |
|   | В | What is an ideal voltage/current reference and mention their performance characteristics? Describe the general principle of a                                                                  | [7M]                     |
|   |   | bandgap reference circuit                                                                                                                                                                      |                          |
| _ |   | SECTION-III                                                                                                                                                                                    | [ <b>#</b> ]] <b>(</b> ] |
| 5 | А | Draw the circuit diagram of an current source load interver, plot the voltage transfer function and derive its small signal voltage gain                                                       | [7M]                     |

#### Page 1 of 2

**R18** 

|    | В | Give a neat sketch of CMOS differential amplifier with active current<br>mirror load and derive the voltage gain, slew rate and voltage transfer<br>curve                                                                       | [7M]          |
|----|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|    |   | OR                                                                                                                                                                                                                              |               |
| 6  | А | What are the advantages of cascading?? Provide a circuit implementation of a cascode amplifier (with current mirror biasing) and derive its voltage gain                                                                        | [ <b>7</b> M] |
|    | В | Write short notes on high gain amplifier architectures<br>SECTION-IV                                                                                                                                                            | [7M]          |
| 7  | А | What is the need for frequency compensation in an opamp? Describe<br>the miller compensation of a two stage op-amp                                                                                                              | [7M]          |
|    | В | Design a two-stage opamp for the below specifications<br>Av=3000V/V, Vdd=2.5V, Vss = -2.5V, GB=10MHz, CL=10pF, SR ><br>20V/uS, Vout,range=+-2V, ICMR=-1V to 2V, Pdiss=2mW. Assume<br>appropriate material and device parameters | [7M]          |
| 8  | А | OR<br>Provide a neat sketch of nMOS input PMOS cascode folded cascode<br>opamp and derive the output voltage swing, output resistance and small<br>signal voltage gain                                                          | [7M]          |
|    | В | Write short notes on measurement/simulation of gain, bandwidth, CMRR and PSRR of an opamp                                                                                                                                       | [7M]          |
|    |   | SECTION-V                                                                                                                                                                                                                       |               |
| 9  | А | Describe the model of a comparator with finite gain. Define the static<br>and dynamic characteristics of a comparator                                                                                                           | [7M]          |
|    | В | With a neat sketch, describe the methods to increase the capacitive drive<br>of a tw-stage open loop comparator                                                                                                                 | [7M]          |
|    |   | OR                                                                                                                                                                                                                              |               |
| 10 | А | Draw a neat sketch of two-stage open loop comparator and derive its $V_{OH}$ , small signal gain, frequency response and slew rate                                                                                              | [7M]          |
|    | В | What is the need for comparator with hysteresis? Provide a neat sketch of comparator with hysteresis and plot input/output waveforms with and without hysteresis                                                                | [7M]          |

#### (Autonomous Institution – UGC, Govt. of India)

# M.Tech I Year I Semester Supplementary Examinations, November 2022 CMOS Analog IC Design

(VLSI&ES)

Time: 3 hours

Max. Marks: 70

Answer Any Five Questions

All Questions carries equal marks.

#### \*\*\*

| 1 | А | Discuss the Passive Components of the MOS transistor?                                               | [7M]  |
|---|---|-----------------------------------------------------------------------------------------------------|-------|
|   | В | Explain sub threshold MOS model?                                                                    | [7M]  |
| 2 | А | Explain the CMOS device Modelling?                                                                  | [7M]  |
|   | В | Draw the small-signal model for the MOS transistor. Briefly explain each component in that?         | [7M]  |
| 3 | А | Explain the given simplest forms of the current mirror, the MOS version of the current mirror?      | [7M]  |
|   | В | Explain the Bipolar simple current mirror with degeneration helper with necessary equations?        | [7M]  |
| 4 |   | What is the Current Mirror? Explain the general properties of current mirrors with a block Diagram? | [14M] |
| 5 | А | Design a CMOS current mirror load differential amplifier?                                           | [7M]  |
|   | В | Explain the slew rate and noise for a p-channel differential amplifier with necessary equations?    | [7M]  |
| 6 | А | Explain about cascade amplifier?                                                                    | [7M]  |
|   | В | Explain about the design of CMOS opamps?                                                            | [7M]  |
| 7 | А | Explain about the Cascode Op-amps?                                                                  | [7M]  |

| В | Explain the design of Two-stage op-amps?                                                                                | [7M] |
|---|-------------------------------------------------------------------------------------------------------------------------|------|
| А | Compare the dynamic latch with the NMOS and PMOS latches. What are the advantages and disadvantages of the two latches? | [7M] |
| В | Explain the different types of Open-loop comparator?                                                                    | [7M] |

8

#### (Autonomous Institution – UGC, Govt. of India)

### M.Tech I Year I Semester Regular/Supplementary Examinations, June 2022 CMOS Analog IC Design

#### (VLSI&ES)

| Roll No |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |

Time: 3 hours

Max. Marks: 70

Answer Any Five Questions

All Questions carries equal marks.

#### \*\*\*

| 1 | А | Explain the Large-signal model for the MOS Transistor?                                                                                                                                                                                     | [7M] |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | В | Explain about computer simulation model?                                                                                                                                                                                                   | [7M] |
| 2 | А | Draw the small-signal model for the MOS transistor. Briefly explain each component in that?                                                                                                                                                | [7M] |
|   | В | Choose values of VGS = 1,2,3,4 and 5V, assume that the channel modulation parameter is zero. Sketch to scale the output characteristics of an enhancement n-channel device if $VT = 0.7V$ and $ID = 500\mu$ A when VGS = 5 Vin saturation. | [7M] |
| 3 | A | Explain the simplest forms of the current mirror and the Bipolar version of the current mirror?                                                                                                                                            | [7M] |
|   | В | Explain in detail the MOS cascode current mirror with necessary equations?                                                                                                                                                                 | [7M] |
| 4 | A | Explain the difference between cascade current mirror and Wilson current mirror?                                                                                                                                                           | [7M] |
|   | В | Write a short notes on current sinks and sources?                                                                                                                                                                                          | [7M] |

| 5 | A | Briefly explain the differential amplifiers. With necessary equation give the large-signal analysis of CMOS differential amplifiers? | [7M] |
|---|---|--------------------------------------------------------------------------------------------------------------------------------------|------|
|   | В | Derive the expression for power-supply rejection ratio of Two-stage op-<br>amps?                                                     | [7M] |
| 6 | А | Explain about current amplifier?                                                                                                     | [7M] |
|   | В | Explain the concept of push-pull inverter with a neat diagram. Derive the small signal voltage gain and find the zero in plane?      | [7M] |
| 7 | A | Explain about the design of Two-stage op-amps?                                                                                       | [7M] |
|   | В | Explain the compensation of Op-amps?                                                                                                 | [7M] |
| 8 | A | Differentiate the Two-stage comparator and Discrete-time Comparator?                                                                 | [7M] |
|   | В | With neat sketch and necessary equations explain the Design aspect of a two stage open loop comparator for slewing response?         | [7M] |

\*\*\*\*

#### (Autonomous Institution – UGC, Govt. of India)

#### M.Tech I Year I Semester Supplementary Examinations, November 2022 CMOS Analog Integrated Circuit Design

(VLSI&ES)

| Roll No |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |

Time: 3 hours

#### Max. Marks: 70

#### Answer Any Five Questions

#### All Questions carries equal marks.

\*\*\*

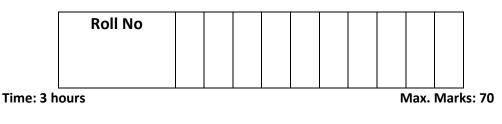
- 1Explain about the computer simulation models.[14M]2Explain the Large-signal model for the MOS Transistor.[14M]
- 3 Discuss about current sinks and sources.
- 4 Explain the difference between cascade current mirror and Wilson current mirror. [14M]
- 5 Explain about the current amplifier. [14M]
- 6 Explain about the output amplifier. [14M]

[14M]

- **7** Explain about the design of CMOS op-amps.
- 8 How to improve the performance of Open loop comparator. [14M]

\*\*\*\*\*

# R20


# MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

## (Autonomous Institution – UGC, Govt. of India)

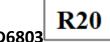
#### M.Tech I Year I Semester Regular Examinations, July 2021

**CMOS Analog IC Design** 





Answer Any Five Questions


All Questions carries equal marks.

\*\*\*

- 1 Find the Threshold voltage and Body factor of an n-channel [14M] transistor with an  $n^+$  silicon gate if  $t_{ox} = 200$  °A,  $N_A = 3 \times 10^{16}$  cm<sup>-3</sup>, gate doping  $N_D = 4 \times 10^{19}$  cm<sup>-3</sup>, and if the number of positively charged ions at Gate-Silicon interface per area is  $10^{10}$  cm<sup>-2</sup>.
- 2 Interpret the simple MOS large signal model using mathematical [14M] models.
- 3 Model the Voltage reference circuits using voltage division of [14M] Resistor and Active device implementation.
- What is current mirror circuit and discusses its operation using [14M]
   various blocks

- 5 What is Active load inverter? Develop small signal model for the Active [14M] load inverter.
- **6** Develop CMOS differential Amplifier and obtain the Differential **[14M]** transconductance of the amplifier.
- 7 Draw the block diagram of a general two stage Op-Amp and explain the [14M] functionality each block.
- 8 Identify model of an Ideal comparator, comparator with finite gain and [14M]
   comparator with input-offset voltage.

\*\*\*\*\*



Code No: R20D6803

# MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

#### (Autonomous Institution – UGC, Govt. of India)

# M.Tech I Year I Semester Supplementary Examinati CMOS Analog IC Design

#### (VLSI&ES)

| Roll No |  |  |  |  |  |
|---------|--|--|--|--|--|
|         |  |  |  |  |  |
|         |  |  |  |  |  |

#### Time: 3 hours

#### Max. Marks: 70

**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

#### \*\*\*

#### **SECTION-I**

1 Develop the small signal model of MOS [14M] transistor and derive the equation for its transconductance.

#### OR

2 For an n-channel MOSFET with an n<sup>+</sup> silicon [14M] gate if  $t_{ox} = 200$  °A,  $N_A= 3 \times 10^{15}$  cm<sup>-3</sup>, gate doping  $N_D = 4 \times 10^{18}$  cm<sup>-3</sup>, and if the number of positively charged ions at Gate-Silicon interface per area is  $10^{10}$  cm<sup>-2</sup>. Find the V<sub>t</sub> and  $\gamma$  of the transistor.

#### **SECTION-II**

**3** What is Standard Cascode current circuit and **[14M]** discusses its operation using output characteristics.

**4** What happens when Gate and Drain of MOS **[14M]** transistor are tied together? Show its I-V characteristics and its small signal model.

#### SECTION-III

- Identify the circuit models for Active load, [14M] current source and Push-pull inverters.
- 6 Develop CMOS differential Amplifier using [14M] current mirror load and obtain the Differential transconductance of the amplifier. <u>SECTION-IV</u>
- 7 List the design procedure parameters of two [14M] stage CMOS Op-Amp.

OR

- 8 Derive the method for calculating Power-Supply [14M] Rejection Ratio and its model.
   SECTION-V
- **9** Build the circuit model and frequency response **[14M]** of two stage comparator.

OR

Find the propagation delay time of open-loop [14M] comparator that has a dominant pole at 10<sup>3</sup> rad/s, DC gain of 10<sup>4</sup>, slew rate 1 V/μs, and a binary output voltage swing of 1 V for an applied input voltage 10 mV.

#### \*\*\*\*\*\*

#### (Autonomous Institution – UGC, Govt. of India)

### M.Tech I Year I Semester Supplementary Examinations, Decembe CMOS Analog Integrated Circuit Design

(VISI&FS)

| Roll No |  |  | , |  |  |  |
|---------|--|--|---|--|--|--|
|         |  |  |   |  |  |  |

#### Time: 3 hours 70

**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

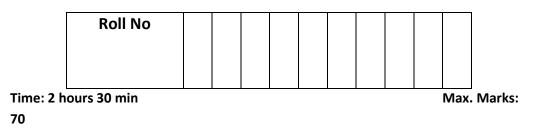
#### \*\*\*

#### **SECTION-I**

| 1 | a). Discuss about the Passive Components of the MOS transistor.                                                                                                                           | [7M]         |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|   | b).Explain about the computer simulation models.                                                                                                                                          | [7M]         |
|   | OR                                                                                                                                                                                        |              |
| 2 | a).Compare NMOS and CMOS technologies with an example.                                                                                                                                    | [7M]         |
|   | b).Explain sub threshold MOS model.                                                                                                                                                       | [7M]         |
|   | SECTION-II                                                                                                                                                                                |              |
| 3 | <ul><li>a).Write a short note on current sinks and sources.</li><li>b).Explain the difference between cascade current mirror and Wilson current mirror.</li></ul>                         | [7M]<br>[7M] |
|   | OR                                                                                                                                                                                        |              |
| 4 | <ul> <li>a).Explain in details the MOS cascode current mirror with necessary equations.</li> <li>b).Illustrate the Bipolar version of current mirror with necessary equations.</li> </ul> | [7M]<br>[7M] |
| 5 | a).Explain the concept of push-pull inverter with neat diagram.                                                                                                                           | [7M]         |

Max. Marks:

|    | b).Derive the small signal voltage gain and find the zero in plane.                 | [7M]         |
|----|-------------------------------------------------------------------------------------|--------------|
|    | OR                                                                                  |              |
| 6  | a).Name the different output amplifiers and explain any one in detailed.            | [7M]<br>[7M] |
|    | b).Illustrate the Architectures of High Gain Amplifiers.                            | [7141]       |
|    | SECTION-IV                                                                          |              |
| 7  | a).Explain about the design of Two-stage op-amps.                                   | [7M]         |
|    | b).Demonstrate the Cascode Op-amps.                                                 | [7M]         |
|    | OR                                                                                  |              |
| 8  | a).Derive the expression for power-supply rejection ratio of Two-<br>stage op-amps. | [7M]<br>[7M] |
|    | b).Write a short note on design aspects of Op-Amp.                                  | [, [, ]      |
|    | SECTION-V                                                                           |              |
| 9  | a).Explain about the different types of Open loop comparator                        | [7M]         |
|    | b).Discuss various types of open loop comparators                                   | [7M]         |
|    | OR                                                                                  |              |
| 10 | Elaborate the Performance improvement of Open-Loop<br>Comparators.                  | [14M]        |


\*\*\*\*\*\*

(Autonomous Institution – UGC, Govt. of India)

M.Tech I Year I Semester Supplementary Examinations, February/Mai 2021

#### **CMOS Analog Integrated Circuit Design**





Answer Any Five Questions

All Questions carries equal marks.

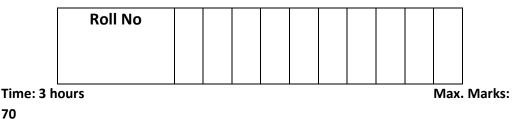
\*\*\*\*

| 1 | a).Draw the small-signal model for the MOS transistor. Briefly         | [7M] |
|---|------------------------------------------------------------------------|------|
|   | explain each component in that.                                        | [7M] |
|   | b). Explain about the CMOS device Modelling.                           |      |
| 2 | a).Choose values of VGS = 1,2,3,4 and 5V, assume that the channel      | [7M] |
|   | modulation parameter is zero. Sketch to scale the output               |      |
|   | characteristics of an enhancement n-channel device if $V_T$ = 0.7V and |      |
|   | $I_D$ = 500µA when V <sub>GS</sub> = 5Vin saturation.                  |      |
|   | b).Explain the Large-signal model for the MOS Transistor.              | [7M] |
| 3 | a).What is Current sink .Explain the general properties of             | [7M] |
|   | current sink with block diagram?                                       |      |
|   | b).Explain in detailed about MOS switch and MOS Diode.                 | [7M] |
| 4 | a).Write a short note on MOS switch model.                             | [7M] |
|   | b).Explain about the Bipolar simple current mirror with                |      |
|   | degeneration helper with necessary equations.                          | [7M] |

| 5 | a).Briefly explain the differential amplifiers. With necessary | [7M]    |
|---|----------------------------------------------------------------|---------|
|   | equation give the large signal analysis of CMOS differential   |         |
|   | amplifiers.                                                    | [7M]    |
|   | b).Design a CMOS current mirror load differential amplifier.   | [, 141] |
| 6 | Explain about a) Current Amplifier b) Cascode Amplifier.       | [14M]   |
| 7 | With neat sketch explain the following                         | [7M]    |
|   | a) Characteristics of Op-Amp b) Classification of Op-Amp       | [7M]    |
| 8 | Explain the following terms with neat sketch.                  | [7M]    |
|   | a) Switched capacitor comparators b) Regenerative comparators. | [7M]    |

\*\*\*\*\*

4


#### MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

#### (Autonomous Institution – UGC, Govt. of India)

# M.Tech I Year - I Semester Regular/Supplementary Examinations, January-2020

CMOS Analog Integrated Circuit Design





**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

\*\*\*

#### SECTION-I

**1** Analyze the Simple MOS Small-Signal Model with the associated **[14M]** parameters in detail.

#### OR

- 2 a) Illustrate the formation of MOS transistor using n-well [7M] technology and threshold voltage.
  - b) Describe the importance of Sub-threshold MOS Model with relevant diagram

[7M]

#### **SECTION-II**

- **3** a) Draw the model for a non ideal switch and explain its **[6M]** parameters in detail
  - b) Draw and explain about a simple current mirror with Beta [8M] helper.

OR

- a) Describe the concept of increasing the output resistance in **[7M]** current sink and the factor by which it is increased?
  - b) Differentiate between Wilson current mirror and cascode Wilson current mirror

[7M]]

#### SECTION-III

| 5  | Illustrate the design of Cascode Amplifiers.                                        | [14M] |
|----|-------------------------------------------------------------------------------------|-------|
|    | OR                                                                                  |       |
| 6  | Design a CMOS differential amplifier with current mirror load                       | [14M] |
|    | SECTION-IV                                                                          |       |
| 7  | a) With a schematic explain about operational-amplifier with its equivalent circuit | [4M]  |
|    | b) Define and explain the following terms                                           | [10M] |
|    | i) Common-Mode Input Range                                                          | []    |
|    | ii) Common-Mode Rejection Ratio                                                     |       |
|    | OR                                                                                  |       |
| 8  | a) Briefly explain the Miller compensating networks in op-Amps.                     | [7M]  |
|    | b) Design the two stage CMOS op-amp to meet the important specifications            | [7M]  |
|    | SECTION-V                                                                           |       |
| 9  | Describe the following                                                              | [7M]  |
|    | (a) Auto zeroing technique (b) Comparator using hysteresis                          | [7M]  |
|    | OR                                                                                  |       |
| 10 | a) Discuss the Characterization of Comparator                                       | [7M]  |
|    | b) Explain the types of discrete time Comparator.                                   | [7M]  |

\*\*\*\*\*

#### (Autonomous Institution – UGC, Govt. of India)

#### M.Tech I-Year - I Semester Supplementary Examinations, Dec-18/Jan-19

#### CMOS Analog Integrated Circuit Design (VLSI&ES)

| Roll No |  |  |  |   |      |      |        |
|---------|--|--|--|---|------|------|--------|
|         |  |  |  | ſ | Лах. | Marl | cs: 70 |

Time: 3 hours

**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

#### \*\*\*\*

|      |    |                                                                                                                                     | Marks | со  | Blooms<br>Level |
|------|----|-------------------------------------------------------------------------------------------------------------------------------------|-------|-----|-----------------|
|      |    | SECTION-I                                                                                                                           |       |     |                 |
| Q.1. | a) | Draw the physical structure of n channel and p channel MOS transistor<br>using well technology and highlight the importance points? | [7M]  | CO1 | 2               |
|      | b) | Explain the importance of BSIM3 model addresses threshold voltage reduction                                                         | [7M]  | CO1 | 2               |
|      |    | OR                                                                                                                                  |       |     |                 |
| Q.2. | a) | Explain the small signal model for the MOS transistor                                                                               | [7M]  | CO2 | 2               |
|      | b) | Explain about CMOS device model?                                                                                                    | [7M]  |     |                 |
|      |    | SECTION-II                                                                                                                          | II    |     | 1               |

| Q.3. | a) | Explain the feedback through effects by using a dummy transistor?                                         | [7M] | CO3 | 2 |
|------|----|-----------------------------------------------------------------------------------------------------------|------|-----|---|
|      | b) | Draw the circuit diagram of standard cascode current sink and how its reduces the errors in V or I        | [7M] |     |   |
|      |    | OR                                                                                                        |      |     |   |
| Q.4. | a) | What do you mean by band gap reference and list the principle involved?                                   | [7M] | CO2 | 4 |
|      | b) | Explain 2 Input NOR gate with depletion NMOS loads. Calculate output high voltage and output low voltage? | [7M] |     |   |
|      | 1  | SECTION-III                                                                                               | 1    |     |   |

| Q.5. | a) | Draw the circuit diagram of output amplifier using push pull inverting amplifier and comment on | [7M] | CO3 | 2 |
|------|----|-------------------------------------------------------------------------------------------------|------|-----|---|
|------|----|-------------------------------------------------------------------------------------------------|------|-----|---|

|      |    | it?                                                                                                  |      |     |   |
|------|----|------------------------------------------------------------------------------------------------------|------|-----|---|
|      | b) | Explain the noise model of a p channel differential amplifier ?                                      | [7M] | CO3 | 2 |
|      |    | OR                                                                                                   |      |     |   |
| Q.6. | a) | Explain the design relationships for the differential amplifier?                                     | [7M] | CO3 | 2 |
|      | b) | Draw the circuit diagram of differential mode and common mode<br>circuits using CMOS and<br>explain? | [7M] | CO3 | 3 |

# **SECTION-IV**

| Q.7. |    | What is compensation of Op-amp? Explain the operation of Miller |       | CO4 | 4 |
|------|----|-----------------------------------------------------------------|-------|-----|---|
|      |    | compensation                                                    | [14M] |     |   |
|      |    | OR                                                              |       |     |   |
| Q.8. | a) | Explain the design procedure for the 2 stage CMOS opamp? [7M]   | [7M]  | CO4 | 3 |
|      | b) | Explain folded cascode op amp? [7M]                             | [7M]  |     |   |

# **SECTION-V**

| Q.9.  | a) | Explain regenerative comparators? [7M]                                               | [7M] | CO5 | 4 |
|-------|----|--------------------------------------------------------------------------------------|------|-----|---|
|       | b) | Draw the switched capacitor comparator and highlight four important points           | [7M] |     |   |
|       |    | OR                                                                                   |      |     |   |
| Q.10. | a) | How to improve the performance of an open loop high gain comparator by auto zeroing? | [7M] | CO5 | 5 |
|       | b) | Explain clamped push pull output comparator                                          | [7M] |     |   |

#### (Autonomous Institution – UGC, Govt. of India)

#### M.Tech I Year I Semester Supplementary Examinations, October/November 2020

#### CMOS Analog Integrated Circuit Design

#### (VLSI&ES)

| Roll No       |  |  |  |  |  |  |  |  |  |  |
|---------------|--|--|--|--|--|--|--|--|--|--|
|               |  |  |  |  |  |  |  |  |  |  |
| Max. Marks: 7 |  |  |  |  |  |  |  |  |  |  |

Time: 2 hours

Answer Any Four Questions

All Questions carries equal marks.

\*\*\*

- Write a brief note on various passive components that are available in CMOS technologies with relevant layout diagrams
- 2 Analyze the Simple MOS Large-Signal Model with the associated parameters in detail.
- **3** Illustrate the MOS switch operation and various models with application
- 4 Explain the concept of current sink and Design a current sink of  $250\mu$ A and a V<sub>MIN</sub> of 0.5V using self biased high-swing cascade current source.
- 5 Illustrate the various types of CMOS inverting Amplifiers and small signal model demonstrating the parasitic capacitances
- **6** a) Design a differential Input Current Amplifier
  - b) Briefly give a overview of High Gain Amplifiers Architectures
- 7 Describe the miller compensation of a two stage op amp.

#### \*\*\*\*\*

Code No: R15D6805

#### **MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY**

#### (Autonomous Institution – UGC, Govt. of India)

#### M.Tech I-Year - I Semester Supplementary Examinations, Dec-18/Jan-19

#### CMOS Analog Integrated Circuit Design (VLSI&ES)

| Roll No |  |  |  |  |                   |
|---------|--|--|--|--|-------------------|
|         |  |  |  |  | <br>lay Marks: 75 |

Time: 3 hours

Max. Marks: 75

**Note:** This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 15 marks.

#### \*\*\*\*

|      |    |                                                                  | Marks  | со  | Bloo<br>ms<br>Level |
|------|----|------------------------------------------------------------------|--------|-----|---------------------|
|      |    | SECTION-I                                                        |        |     |                     |
| Q.1. | a) | Explain about MOS large- signal analysis of CMOS Device Modeling | [10M]  | CO1 | 2                   |
|      | b) | Explain sub-threshold MOS model Parameters.                      | [5M]   | CO1 | 2                   |
|      |    | OR                                                               |        |     |                     |
| Q.2. | a) | Discuss about the passive components of the MOS transistor.      | [7M]   | CO2 | 2                   |
|      | b) | Write about computer simulation models for MOS transistor        | [8M]   | CO2 | 2                   |
|      |    | SECTION-II                                                       | ı      |     |                     |
| Q.3. | a) | Explain the working of current mirror with beta helper           | [10M]  | CO2 | 2                   |
|      | b) | Explain the operation of MOS Diode                               | [5M]   | CO2 | 1                   |
|      |    | OR                                                               |        |     |                     |
| Q.4. |    | Discuss the Cascode current Mirror and Wilson Current Mirror     | [1504] | CO2 | 2                   |

[15M]

# R15

|      |    | SECTION-III                                                 |       |     |   |
|------|----|-------------------------------------------------------------|-------|-----|---|
| Q.5. | a) | Explain about working of differential amplifier             | [10M] | CO3 | 3 |
|      | b) | Explain the operation of CMOS inverter                      | [5M]  | CO3 | 3 |
|      |    | OR                                                          |       |     |   |
| Q.6. |    | Discuss the principle of High Gain Amplifiers Architectures |       | CO3 | 1 |
|      |    |                                                             | [15M] |     |   |
|      |    | SECTION-IV                                                  |       |     |   |

| Q.7. |    | Discuss the concept of op amp compensation and give the necessary |       | CO4 | 2 |
|------|----|-------------------------------------------------------------------|-------|-----|---|
|      |    | expressions.                                                      | [15M] |     |   |
|      |    | OR                                                                |       |     |   |
| Q.8. | a) | Explain the Design of Two-Stage Op Amps                           | [10M] | CO4 | 6 |
|      | b) | What are the various measurements of op amp?                      | [5M]  | CO4 | 5 |

#### **SECTION-V**

| Q.9.  | a) | Explain the Discrete-Time Comparators.                                      | [7M]  | CO4 | 2 |
|-------|----|-----------------------------------------------------------------------------|-------|-----|---|
|       |    |                                                                             |       |     |   |
|       |    |                                                                             |       |     |   |
|       | b) | What is a comparator and list the important characteristics of a comparator | [8M]  | CO4 | 2 |
|       |    | OR                                                                          |       |     |   |
| Q.10. |    | What are the various forms of improving the slew-rate of a 2-stage op       | [15M] | CO5 | 2 |
|       |    | amp and obtain the expression for slew rate of CMOS op amp                  |       |     |   |
|       |    |                                                                             |       |     |   |